Abstract
Herein, we report the synthesis and characterization of two manganese tricarbonyl complexes, MnI (HL)(CO)3 Br (1 a-Br) and MnI (MeL)(CO)3 Br (1 b-Br) (where HL=2-(2'-pyridyl)benzimidazole; MeL=1-methyl-2-(2'-pyridy)benzimidazole) and assayed their electrocatalytic properties for CO2 reduction. A redox-active pyridine benzimidazole ancillary ligand in complex 1 a-Br displayed unique hydrogen atom transfer ability to facilitate electrocatalytic CO2 conversion at a markedly lower reduction potential than that observed for 1 b-Br. Notably, a one-electron reduction of 1 a-Br yields a structurally characterized H-bonded binuclear Mn(I) adduct (2 a') rather than the typically observed Mn(0)-Mn(0) dimer, suggesting a novel method for CO2 activation. Combining advanced electrochemical, spectroscopic, and single crystal X-ray diffraction techniques, we demonstrate the use of an H-atom responsive ligand may reveal an alternative, low-energy pathway for CO2 activation by an earth-abundant metal complex catalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.