Abstract

Small Cu and Au particles in contact with a TiC(001) surface undergo a charge polarization that makes them very active for CO2 activation and the catalytic synthesis of methanol. The binding energy of CO2 on these systems is in the range of 0.6 to 1.1 eV, much larger than those observed on surfaces or nanoparticles of Cu and Au. Thus, in spite of the poor CO2 hydrogenation performance of Cu(111) and Au(111), the Cu/TiC(001) and Au/TiC(001) systems display a catalytic activity for methanol synthesis substantially higher than that of conventional Cu/ZnO catalysts. The turnover frequencies for methanol production on Cu/TiC(001) are 170-500 times much larger than on Cu(111). The present study moves away from the typical approach of using metal/oxide catalysts for the synthesis of methanol via CO2 hydrogenation. This work shows that metal carbides can be excellent supports for enhancing the ability of noble metals to bond and activate CO2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.