Abstract

CO2 phase change absorbents (CPCAs) have garnered significant attention for their potential to reduce energy consumption. However, suitable phase change agent is suffering from the selection among a wide range of organic solvents. In order to explore the phase separation mechanism and minimize screening efforts of CPCAs, the phase separation behaviors of the diethylenetriamine (DETA)-based absorbents constituted with different organic solvents were investigated, and the interaction energies revealed that the ion–dipole interaction is the dominant role in CO2-riched absorbents. The intensification of the self-aggregation of organic solvents by the ion-water interaction, was proposed as the main reason for the differences in the phase separation behavior in different DETA-based absorbents. Based on the relative ET(30) and relative dielectric constant of the organic solvent, a phase separation diagram can be drawn to predict the phase change behaviors of DETA absorbents. Among the DETA-based CPCAs, DETA + DMF + H2O absorbents showed the largest CO2-rich phase loading, and the optimized DETA + DMF + H2O CPCA exhibited 200 % of the CO2 cyclic loading compared to 30 wt% MEA aqueous solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.