Abstract

Nickel catalysts supported on mesoporous nanocrystalline gamma alumina with various nickel loadings were prepared and employed for thermocatalytic decomposition of methane into CO x -free hydrogen and carbon nanofibers. The prepared catalysts with different nickel contents exhibited mesoporous structure with high surface area in the range of 121.3 to 66.2m2g−1. Increasing in nickel content decreased the pore volume and increased the crystallite size. The catalytic results revealed that the nickel content and operating temperature both play important roles on the catalytic performance of the prepared catalysts. The results showed that increasing in reaction temperature increased the initial conversion of catalysts and significantly decreased the catalyst lifetime. Scanning electron microscopy (SEM) analysis of the spent catalysts evaluated at different temperatures revealed the formation of intertwined carbon filaments. The results showed that increasing in reaction temperature decreased the diameters of nanofibers and increased the formation of encapsulating carbon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.