Abstract

Anaerobic fungi and methanogenic archaea are two classes of microorganisms found in the rumen microbiome that metabolically interact during lignocellulose breakdown. Here, stable synthetic co-cultures of the anaerobic fungus Caecomyces churrovis and the methanogen Methanobacterium bryantii (not native to the rumen) were formed, demonstrating that microbes from different environments can be paired based on metabolic ties. Transcriptional and metabolic changes induced by methanogen co-culture were evaluated in C. churrovis across a variety of substrates to identify mechanisms that impact biomass breakdown and sugar uptake. A high-quality genome of C. churrovis was obtained and annotated, which is the first sequenced genome of a non-rhizoid-forming anaerobic fungus. C. churrovis possess an abundance of CAZymes and carbohydrate binding modules and, in agreement with previous studies of early-diverging fungal lineages, N6-methyldeoxyadenine (6mA) was associated with transcriptionally active genes. Co-culture with the methanogen increased overall transcription of CAZymes, carbohydrate binding modules, and dockerin domains in co-cultures grown on both lignocellulose and cellulose and caused upregulation of genes coding associated enzymatic machinery including carbohydrate binding modules in family 18 and dockerin domains across multiple growth substrates relative to C. churrovis monoculture. Two other fungal strains grown on a reed canary grass substrate in co-culture with the same methanogen also exhibited high log2-fold change values for upregulation of genes encoding carbohydrate binding modules in families 1 and 18. Transcriptional upregulation indicated that co-culture of the C. churrovis strain with a methanogen may enhance pyruvate formate lyase (PFL) function for growth on xylan and fructose and production of bottleneck enzymes in sugar utilization pathways, further supporting the hypothesis that co-culture with a methanogen may enhance certain fungal metabolic functions. Upregulation of CBM18 may play a role in fungal–methanogen physical associations and fungal cell wall development and remodeling.

Highlights

  • Anaerobic fungi are efficient degraders of recalcitrant lignocellulosic biomass that are found in the guts of herbivores

  • The first high-quality genome of a non-rhizoid-forming anaerobic fungus from the Caecomyces genera was sequenced with PacBio SMRT sequencing using high molecular weight DNA fragments, a method that is critical to high-quality genome assemblies for anaerobic fungi [2, 23, 24]

  • We found that co-cultivation of the C. churrovis fungal strain with the non-native methanogen M. bryantii enhanced production of transcripts containing these chitin-binding carbohydrate binding module domains (CBMs) 18 domains across a variety of substrates

Read more

Summary

Introduction

Anaerobic fungi are efficient degraders of recalcitrant lignocellulosic biomass that are found in the guts of herbivores. Gut fungi function within a community of biomass-degrading bacteria, protozoa, and methanogenic archaea linked by complex metabolic interactions and functional redundancy [7]. Isolating individual members of these natural consortia is one approach to develop a more detailed understanding of microbial interactions, which can be used to design optimized consortia for biotechnological applications to break down lignocellulose-rich waste. These microbes can be selected through “top-down” enrichment techniques such as serial cultivation or antibiotic treatment to isolate syntrophic pairs of fungi and methanogens from naturally occurring consortia. Communities can be formed using “bottom up” methods mixing separate axenic cultures of these microbes to create synthetic pairings linked by metabolic dependency [7,8,9]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call