Abstract

Citrate-modified biochar nanoparticles (CBCNPs) represent a promising amendment with plant-available silicon (PASi) releasing capacity. However, the co-transport behavior with released PASi remain poorly understood. This study investigated their co-transport in saturated porous media under various solution chemistry and low molecular weight organic acids (LMWOAs). Experimental and two-site kinetic model results revealed that higher ionic strength caused favorable aggregation and size-selective, hindering CBCNPs transport. Divalent Ca2+ ions retained CBCNPs more effectively than K+ due to stronger charge screening and cation bridging. The pH buffering capacity of CBCNPs resulted in consistent transport behavior across a broad pH range (4-8). XDLVO calculation clarified the impact mechanisms of IS, ion types and pH on CBCNPs transport. Furthermore, LMWOAs exhibited a time-dependent blocking effect on CBCNPs transport. Oxalic acid (OA) and citric acid (CA) facilitated CBCNPs transport though mechanisms beyond XDLVO, including steric hindrance, competitive adsorption, and surface hydrophilicity. The presence of LMWOAs significantly hindered PASi co-transport, with the inhibitory effect ranked as acetic acid (AA) ≈ CA > OA > absence of organic acids. The inhibition is attributed to the blocking effect and formation of Si-organic acid complexes, as evidenced by breakthrough curves and density functional theory calculations. This study provides novel insights into the co-transport of CBCNPs with released PASi through mutual mechanisms, indicating both potential environmental benefits and risks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.