Abstract

Abstract China is considering Beishan granitic formation (Gansu Province, China) as the site for high-level radioactive waste (HLW) repositories. Thus, it is crucial to understand the transport behavior of radionuclide in Beishan granitic media under disposal conditions. In this context, the co-transport of U(VI) (as the representative of radionuclides) and bentonite colloid (BC, from erosion of compacted bentonite) in particulate Beishan granite was studied as a function of important in-situ factors, such as BC concentration, ionic strength, pH and flow rate. We found that the increase of BC concentration (BC = 240–480 mg/L) did not affect the transport of individual BC, whereas it significantly facilitated the transport of U(VI). The increase of ionic strength (I = 0.001–0.01 M NaCl) or decrease of pH (pH = 7.50–5.40) obviously inhibited the BC transport, where these inhibiting effects were relatively slight for the transport of U(VI). The increase of flow rate significantly facilitated both the transport of BC and U(VI). Finally, a two-site kinetic attachment/detachment model was applied to describe the breakthrough curves of individual and co-transport of BC. The experimental and modeling results of this study have a significant implication on the safety assessment of HLW repositories built in granitic formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.