Abstract

The assembly of large multimeric complexes in the crowded cytoplasm is challenging. Here we reveal a mechanism that ensures accurate production of the yeast proteasome, involving ribosome pausing and co-translational assembly of Rpt1 and Rpt2. Interaction of nascent Rpt1 and Rpt2 then lifts ribosome pausing. We show that the N-terminal disordered domain of Rpt1 is required to ensure efficient ribosome pausing and association of nascent Rpt1 protein complexes into heavy particles, wherein the nascent protein complexes escape ribosome quality control. Immunofluorescence and in situ hybridization studies indicate that Rpt1- and Rpt2-encoding messenger RNAs co-localize in these particles that contain, and are dependent on, Not1, the scaffold of the Ccr4-Not complex. We refer to these particles as Not1-containing assemblysomes, as they are smaller than and distinct from other RNA granules such as stress granules and GW- or P-bodies. Synthesis of Rpt1 with ribosome pausing and Not1-containing assemblysome induction is conserved from yeast to human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.