Abstract

In this paper we are addressing the co-solute-induced changes in the properties of an aqueous solution of a block copolymer. Due to the preferential interaction of different co-solute with different regions of the block copolymer, the changes were observed in both the physical properties and water dynamics. The modulation of both the physical properties and water dynamics was monitored using different spectroscopic techniques. Different co-solutes affect micellar properties of copolymer to a different extent signifying their interactions with different regions within the copolymer. The solvent relaxation dynamics were also modulated with the additions of different co-solutes. The change in free-energy (ΔGbf) and rate constant for bound to free water interconversion (kbf) in a copolymeric micelle was calculated which gets affected by the addition of co-solutes. The calculated kbf suggests that betaine, sarcosine, TMAO, and GnHCl favor the ordering of water molecules around the micelle and are excluded from the micellar surface whereas, urea favors the formation of free-water molecules rather than the structurally ordered bound water molecules around the micelle by accumulating at the micellar surface. Among the added methylamines trimethylamine N-oxide affected the water dynamics and its kinetics most profoundly. The protective property of GnHCl was revealed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.