Abstract

Battery-electric mobility represents the most promising post-fossil mobility approach as the number of electric vehicles (EVs) worldwide has grown exponentially in recent years. However, the increased electricity demand resulting from EVs' charging processes was unknown when planning the electric grid of existing districts and nowadays may cause violations of operational boundaries. This paper presents an open-source co-simulation using MOSAIK 3.0 to analyze the effects and impacts of an increasing EV penetration rate on the low-voltage grid. The co-simulation is applied to the existing residential district “Am Ölper Berge” in Brunswick, Germany. Within multiple scenarios, user-sided measures for cooperative energy generation, storage, and smart charging strategies are applied to enhance the grid's capacity for EVs by improving voltage regulation. The most effective measure enhancing grid capacity is the self-developed grid correction model, which mitigates voltage range violations using the flexibility of the district's battery storage systems. Solely adding user-sided measures does not create synergistic effects for the grid integration of EVs. Instead, the smart charging strategies enable exploiting these synergies leading to a significant increase in grid capacity. The extendable co-simulation, including the energy system models, simulation scenarios, and input data, will be publicly available and can thus be used for further research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.