Abstract

Cache-partitioned architectures allow subsections of the shared last-level cache (LLC) to be exclusively reserved for some applications. This technique dramatically limits interactions between applications that are concurrently executing on a multicore machine. Consider n applications that execute concurrently, with the objective to minimize the makespan, defined as the maximum completion time of the n applications. Key scheduling questions are as follows: (i) which proportion of cache and (ii) how many processors should be given to each application? In this article, we provide answers to (i) and (ii) for Amdahl applications. Even though the problem is shown to be NP-complete, we give key elements to determine the subset of applications that should share the LLC (while remaining ones only use their smaller private cache). Building upon these results, we design efficient heuristics for Amdahl applications. Extensive simulations demonstrate the usefulness of co-scheduling when our efficient cache partitioning strategies are deployed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.