Abstract
Sleep disorders are common in humans, and sleep loss increases the risk of obesity and diabetes1. Studies in Drosophila2, 3 have revealed molecular pathways4–7 and neural tissues8–10 regulating sleep; however, genes that maintain genetic variation for sleep in natural populations are unknown. Here, we characterized sleep in 40 wild-derived Drosophila lines and observed abundant genetic variation in sleep architecture. We associated sleep with genome-wide variation in gene expression11 to identify candidate genes. We independently confirmed that molecular polymorphisms in Catecholamines up are associated with variation in sleep; and that P-element mutations in four candidate genes affect sleep and gene expression. Transcripts associated with sleep grouped into biologically plausible genetically correlated transcriptional modules. We confirmed co-regulated gene expression using P-element mutants. Genes associated with sleep duration are evolutionarily conserved. Quantitative genetic analysis of natural phenotypic variation is an efficient method for revealing candidate genes and pathways.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.