Abstract

ABSTRACTCo-pyrolysis of Enteromorpha prolifera (EP) (seaweeds) with waste plastics (high density polyethylene (HDPE)) for maximum yield of enhanced biofuels has been investigated. Main and interaction effects of three effective co-pyrolysis parameters (pyrolysis temperature, feedstock blending ratio and heating rate) on bio-oil, char and gas yields were also modeled and simulated, respectively. Optimization studies using central composite rotatable experimental design were performed in Design Expert® Version 8.0.6 software to predict the optimal conditions of co-pyrolysis parameters for maximum yield of enhanced biofuels. Analysis of variance was carried out to determine whether the fit of multiple regressions was significant for second order models. Compositions of bio-oils and chars from the pyrolysis of EP, HDPE and their mixtures at different blending ratios were determined using gas chromatography-mass spectrometry analysis technique. Other important properties of oils and chars such as heating values, water contents, and specific gravity were also determined. Results of products’ analysis revealed that synergistic effect exists between EP and HDPE during co-pyrolysis which led to enhanced seaweed biofuels. Statistical analysis’ results unveiled that feedstock blending ratio, pyrolysis temperature and heating rate significantly influenced bio-oil and char yield rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.