Abstract

Light fraction of bio-oil (LB) has high contents of water and organic acids with good liquidity and is a promising leaching agent for deashing of biomass. Heavy fraction of bio-oil (HB) contains more amounts of phenols and pyrolytic lignin, has poor fluidity, and is easy to carbonize when heated. In this study, a novel method for preparation of biochar from co-pyrolysis of HB and LB leached bamboo (LB-bamboo) has been proposed. Effects of three experimental variables, namely, mass ratio (1:0–0:1), pyrolysis temperature (400–700 °C), and residence time (5–30 min), on the mass yield and properties of biochar were investigated, based on response surface methodology. Results showed that co-processing of HB and bamboo by pyrolysis synergistically improved the yield and higher heating value (HHV) of biochar. Under typical co-pyrolysis conditions (mass ratio 1:1, 550 °C, and 17.5 min), the experimentally determined yield (25.97%) and HHV (29.43 MJ/kg) of biochar from co-pyrolysis of HB and raw bamboo were 1.61% and 1.01 MJ/kg higher than the corresponding theoretically predicted values. The ash and metallic species in bamboo were significantly removed by LB leaching pretreatment, leading to a more synergistic effect observed during the subsequent co-pyrolysis. The experimentally determined yield (24.63%) and HHV (30.62 MJ/kg) of biochar from co-pyrolysis of HB and LB-bamboo were 2.40% and 1.57 MJ/kg higher than the corresponding theoretical values. Ultimately, the regression equations between the biochar properties and the three experimental variables were established. The best fitting models for yield and HHV of biochar were quadratic regression equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.