Abstract

With global municipal solid waste generation increasing steadily, the importance of high-quality, environmentally friendly waste valorization methods is rising, too. Most countries have set themselves ambitious recycling goals and follow a waste hierarchy in which recycling is more preferable than energy recovery. This article focuses on a waste treatment option that already is an integral part of waste management in some countries and enables the simultaneous recovery of energy and mineral constituents: the production of solid recovered fuels (SRFs) from mixed municipal and commercial waste and their use in the cement industry is often referred to as co-processing. The state of the art of SRF production is described and the first comprehensive dataset for SRF samples including major constituents, heavy metal and metalloid contents, energy- and CO2-emission-relevant parameters, ash constituents and the material-recyclable share of SRF is presented. Additionally, a comparison with fossil fuels is given. It is concluded that SRF from state-of-the-art production plants complies with strict limit values for heavy metals, has an average biogenic carbon content of 60%, and its application in the cement industry can be considered as partial recycling (14.5%) and partial energy recovery (85.5%). Leaving no residues to be dealt with, co-processing of waste in the cement industry therefore offers many benefits and can support the shift from a linear to a circular economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call