Abstract
The liquefaction of Blind Canyon seam coal in the presence of one of four different types of co-liquefaction agents (CLAs) was studied at 350°C and 1000 psi (cold) hydrogen pressure. The role of tetralin as a solvent was studied. The four CLAs used include sawdust, horse manure, cow manure and commercial “Super Manure”. The conversion and the asphaltene-plus-preasphaltene yield were obtained by successive dissolution in tetrahydrofuran and hexane, respectively, with the oil-plus-gas yield obtained by difference. Results (on a dry, ash-free basis) are reported as both the overall values of conversion and yields, as well as the incremental differences in conversion and yields, relative to separate liquefaction of coal and the CLA. With or without the addition of tetralin, the overall conversion with cow manure is the smallest for the four co-liquefactions. In the absence of tetralin, the asphaltene-plus-preasphaltene yields are all similar. The presence of tetralin increases the overall conversions and the asphaltene-plus-preasphaltene yields. A study of the incremental differences in conversions and yields indicates that the four CLAs interact with coal and tetralin in different ways. The incremental conversion and the asphaltene-plus-preasphaltene yield appear to be related to the amount of hemi-cellulose in the CLAs, while the incremental oil-plus-gas yield appears to be related to the amount of lignin. Added inorganic compounds appear to negate incremental improvements in the oil-plus-gas yield when tetralin is present.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.