Abstract

Rechargeable lithium-ion batteries (LIBs) are known to be practical and cost-effective devices for storing electric energy. LIBs have a low energy density, which calls for the development of new anode materials. The Prussian blue analog (PBA) is identified as being a candidate electrode material due to its facile synthesis, open framework structures, high specific surface areas, tunable composition, designable topologies and rich redox couples. However, its poor electrical conductivity and mechanical properties are the main factors limiting its use. The present study loaded PBA (Co3[Fe(CN)6]·10H2O) on graphene oxide (Co-Fe-PBA@rGO) and then conducted calcination at 300 °C under the protection of nitrogen, which reduced the crystal water and provided more ion diffusion pathways. As a result, Co-Fe-PBA@rGO showed excellent performance when utilized as an anode in LIBs, and its specific capacities were 546.3 and 333.2 mAh g−1 at 0.1 and 1.0 A g−1, respectively. In addition, the electrode also showed excellent performance in the long-term cycle, and its capacity reached up to 909.7 mAh g−1 at 0.1 A g−1 following 100 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.