Abstract

The chain sequence of co-polymers strongly affects their physical properties. It is, therefore, of crucial importance for the development and final properties of novel materials. Currently however, few analytical methods are available to monitor the sequence of copolymers. The currently preferred method in copolymer-sequence determination, nuclear-magnetic-resonance spectroscopy (NMR), is insensitive (especially when 13C-NMR is required) and often offers little spectral resolution between signals indicative of different subunits. These limitations are especially challenging when one is interested in monitoring the sequence across the molar-mass distribution or in quantifying low abundant subunits. Therefore, we set out to investigate pyrolysis – gas chromatography (Py-GC) as an alternative method. Py-GC is more sensitive than NMR and offers better resolution between various subunits, but it does require calibration, since the method is not absolute. We devised a method to fuse data from NMR and Py-GC to obtain quantitative information on chain sequence and composition for a set of random and block poly(methyl methacrylate-co-styrene) copolymer samples, which are challenging to analyse as MMA tends to fully depolymerize. We demonstrated that the method can be successfully used to determine the chain sequence of both random and block copolymers. Furthermore, we managed to apply Py-GC to monitor the sequence of a random and a block copolymer across the molar-mass distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call