Abstract

Time-of-flight mass spectrometry experiment shows that upon the interactions with carbon monoxide, the mass-selected AuFeO3(-) oxide cluster anions can evaporate neutral gold atoms in a hexapole collision cell and oxidize CO into CO2 in an ion trap reactor. The computational studies identify that the gold atom is loosely attached in the AuFeO3(-) cluster, and the different reaction channels can be attributed to different cluster velocities. The structure of the AuFeO3(-) cluster is very flexible, and the approach of CO induces significant geometrical and electronic structure changes of AuFeO3(-), which facilitates the exposure of the positively charged gold atom to trap and oxidize CO. The CO oxidation by the AuFeO3(-) cluster follows the Au-assisted Mars-van Krevelen mechanism, in which the direct participation of the surface lattice oxygen (O(2-)) is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.