Abstract

The series of heterodinuclear metal oxide carbonyls in the form of TaNiO(CO)n− (n = 5–8) are generated in the pulsed-laser vaporization source and characterized by mass-selected photoelectron velocity-map spectroscopy. During the consecutive CO adsorption, the μ2-O-bent structure initially is the most favorable for TaNiO(CO)5−, and subsequently both μ2-O-bent and μ2-O-linear structures are degenerate for TaNiO(CO)6−, then the μ2-O-linear structure is most preferential for TaNiO(CO)7−, and finally the η2-CO2-tagged structure is the most energetically competitive one for TaNiO(CO)8−, i.e., the CO oxidation occurs at n = 8. In contrast to the literature reported CO oxidation on heteronuclear metal oxide complexes generally proceeding via Langmuir–Hinshelwood-like mechanism, complementary theoretical calculations suggest that both Langmuir–Hinshelwood-like and Eley–Rideal-like mechanisms prevail for the CO oxidation reaction on TaNiO(CO)8− complex. Our findings provide new insight into the composition-selective mechanism of CO oxidation on heteronuclear metal complexes, of which the composition be tailored to fulfill the desired chemical behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.