Abstract

The mechanism of the catalytic oxidation of CO activated by MoS2-supported Au19 nanoparticles (NPs) was studied using density functional theory calculations. Of particular interest were the effects of the physical/chemical modification of a MoS2 support on the CO oxidation pathway and the activation of specific reactive centers, i.e., the Au atoms of Au19 or the Au-MoS2 perimeter sites. We systematically modified MoS2 by introducing an S vacancy or 5% tensile strain and studied the shift of each reaction step and the overall change in the reaction pathway and activity. Despite the lack of direct involvement of the Au-MoS2 perimeter in the reaction, the combination of an S vacancy and the tensile strain in the MoS2 support was found to improve the stability and catalytic activity of Au NPs for CO oxidation. The results show that support modification can provide information for new pathways for the rational design of Au-based catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.