Abstract
DFT+U calculations of CO oxidation by Au13 nanoclusters (NCs) supported on either CeO2 or doped (X-Ce)O2 (X = Au, Pt, Pd, Ti, Ru, Zr) show that doping the CeO2 support accelerates CO oxidation by the Mars-van Krevelen mechanism at the Au-(X-Ce)O2 interface. We find that Au, Pd, Pt, and Ti dopants significantly lower the vacancy formation energy of the CeO2 support and that electron donation from the supported Au13 NC shifts the vacancy formation energy of (X-Ce)O2 and determines the final vacancy formation energy of Au13@(X-Ce)O2. The vacancy formation energy of Au13@(X-Ce)O2 is a good reactivity descriptor for CO oxidation at the Au-(X-Ce)O2 interface and a screening factor for dopant selection. Our results confirm that the catalytic activity of oxide-supported Au catalysts can be modified by the chemical composition of the support and suggest that chemical modification of the oxide support is promising for the optimization of oxidation catalysis by supported Au NCs/nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.