Abstract

Terminal sialic acids on N-glycan of recombinant human erythropoietin are very important for in vivo half-life, as this glycoprotein has three N-glycosylation sites. N-acetylglucosaminyltransferases I, II, IV, and V (i.e. Mgat1, Mgat2, Mgat4, and Mgat5) catalyze the formation of a glycan antennary structure. These enzymes display different reaction kinetics for a common substrate and generally show low expression in Chinese hamster ovary (CHO) cells. Therefore, genetic control of Mgat expression is an effective method to increase sialic acid contents by enhancing glycan antennarity. To produce highly sialylated albumin-erythropoietin (Alb-EPO), we co-overexpressed the Mgat1 and Mgat4 genes in CHO cells and determined the optimal ratio of Mgat1:Mgat4 gene expression. All transfected cell lines showed increased gene expression of Mgat4, including Mgat1 overexpressing cell line. Sialic acid content of Alb-EPO was highest in co-transfected cells with excess Mgat4 gene, and these cells showed a higher tri- and tetra-antennary structure than control cells. Based on these results, we suggest that co-transfection of the Mgat1 and Mgat4 genes at a ratio of 2:8 is optimal for extension of antennary structures. Also, regulation of Mgat gene expression in the glycan biosynthesis pathway can be a novel approach to increase the terminal sialic acids of N-glycans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.