Abstract

In this study, phosphoenolpyruvate and erythrose-4-phosphate are efficiently supplied by collaborative design of Embden-Meyerhof-Parnas (EMP) pathway and pentose phosphate (PP) pathway in Escherichia coli, thus increasing the L-tryptophan production. Firstly, the effects of disrupting EMP pathway on L-tryptophan production were studied, and the results indicated that the strain with deletion of phosphofructokinase A (i.e., E. coli JW-5 ΔpfkA) produced 23.4 ± 2.1 g/L of L-tryptophan production. However, deletion of phosphofructokinase A and glucosephosphate isomerase is not conducive to glucose consumption and cell growth, especially deletion of glucosephosphate isomerase. Next, the carbon flux in PP pathway was enhanced by introduction of the desensitized glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd) and thus increasing the L-tryptophan production (i.e., 26.5 ± 3.2 g/L vs. 21.7 ± 1.3 g/L) without obviously changing the cell growth (i.e., 0.41 h−1 vs. 0.44 h−1) as compared with the original strain JW-5. Finally, the effects of co-modifying EMP pathway and PP pathway on L-tryptophan production were investigated. It was found that the strain with deletion of phosphofructokinase A as well as introduction of the desensitized zwf and gnd (i.e., E. coli JW-5 zwf243 gnd361 ΔpfkA) produced 31.9 ± 2.7 g/L of L-tryptophan, which was 47.0% higher than that of strain JW-5. In addition, the glucose consumption rate of strain JW-5 zwf243 gnd361 ΔpfkA was obviously increased despite of the bad cell growth as compared with strain JW-5. The results of this study have important reference value for the following application of metabolic engineering to improve aromatic amino acids producing strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.