Abstract

Prostaglandin (PG) D(2) has emerged as a key mediator of allergic inflammatory pathologies and, particularly, PGD(2) induces leukotriene (LT) C(4) secretion from eosinophils. Here, we have characterized how PGD(2) signals to induce LTC(4) synthesis in eosinophils. Antagonists and agonists of DP(1) and DP(2) prostanoid receptors were used in a model of PGD(2) -induced eosinophilic inflammation in vivo and with PGD(2) -stimulated human eosinophils in vitro, to identify PGD(2) receptor(s) mediating LTC(4) secretion. The signalling pathways involved were also investigated. In vivo and in vitro assays with receptor antagonists showed that PGD(2) -triggered cysteinyl-LT (cysLT) secretion depends on the activation of both DP(1) and DP(2) receptors. DP(1) and DP(2) receptor agonists elicited cysLTs production only after simultaneous activation of both receptors. In eosinophils, LTC(4) synthesis, but not LTC(4) transport/export, was activated by PGD(2) receptor stimulation, and lipid bodies (lipid droplets) were the intracellular compartments of DP(1) /DP(2) receptor-driven LTC(4) synthesis. Although not sufficient to trigger LTC(4) synthesis by itself, DP(1) receptor activation, signalling through protein kinase A, did activate the biogenesis of eosinophil lipid bodies, a process crucial for PGD(2) -induced LTC(4) synthesis. Similarly, concurrent DP(2) receptor activation used Pertussis toxin-sensitive and calcium-dependent signalling pathways to achieve effective PGD(2) -induced LTC(4) synthesis. Based on pivotal roles of cysLTs in allergic inflammatory pathogenesis and the collaborative interaction between PGD(2) receptors described here, our data suggest that both DP(1) and DP(2) receptor antagonists might be attractive candidates for anti-allergic therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.