Abstract

The development of bifunctional electrocatalysts with high catalytic activity and cyclic stability is an effective method for electrocatalytic water splitting. Herein, a promising hydroxide/oxide Co(OH)2/α-NiMoO4 NWs/CC heterostructure with nanoflowers decorating the nanowires was fabricated on a carbon cloth (CC) substrate via hydrothermal and calcination methods. In contrast to one-dimensional nanomaterials, the interfaces of Co(OH)2 nanoflowers and α-NiMoO4 nanowires on CC provide more active sites for electrocatalytic reactions; therefore, they exhibit obviously enhanced electrocatalytic activities in overall water splitting. Specifically, the Co(OH)2/α-NiMoO4 NWs/CC electrodes exhibit an overpotential of 183.01 mV for hydrogen evolution reaction (HER) and of 170.26 mV for oxygen evolution reactions (OER) at the current density of 10 mA cm−2 in 1.0 M KOH. Moreover, the electrocatalytic oxygen evolution reaction (OER) activity of the Co(OH)2/α-NiMoO4 NWs/CC electrocatalyst was enhanced after long-term stability tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.