Abstract
Sediment heavy metal contamination poses substantial risks to microbial community composition and functional gene distribution. Bohai Bay (BHB), the second-largest bay in the Bohai Sea, is subject to severe anthropogenic pollution. However, to date, there have been no studies conducted to evaluate the distribution of metal resistance genes (MRGs) and bacterial communities in the coastal sediments of BHB. In this study, we employed high-throughput sequencing based on 16S rRNA genes and real-time quantitative PCR (qPCR) to provide a comprehensive view of toxic metals, MRGs, and bacterial communities in BHB's coastal sediment samples across two seasons. We detected high levels of Cd in the summer samples and As in the autumn samples. The metal content in most autumn samples and all summer samples, based on ecological indices, indicated low ecological risk. Proteobacteria dominated all samples, followed by Desulfobacterota, Bacteroidota and Campilobacterota. Bacterial community variability was higher between autumn sampling sites but more stable in summer. We detected 9 MRG subtypes in all samples, with abundances ranging from 4.58 × 10−1 to 2.25 copies/16S rRNA copies. arsB exhibited the highest relative abundance, followed by acr3, czcA and arrA. The efflux mechanism is a common mechanism for sediment resistance to metal stress in Bohai Bay. Procrustes analysis indicated that bacterial community composition may be a determinant of MRGs composition in BHB sediments. Network analysis suggested that eight classes could be potential hosts for six MRGs. However, this type of correlation requires further validation. To summarize, our study offers preliminary insights into bacterial community and MRG distribution patterns in heavy metal-exposed sediments, laying the groundwork for understanding microbial community adaptations in multi-metal polluted environments and supporting ecological restoration efforts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.