Abstract
The current study investigates the functional diversity of bacterial community existing as a biofilm on the root surface of water hyacinth (Eichhornia crassipes (Mart.) Solms-Laub.) grown in Yamuna river, Delhi, India. Forty-nine bacterial isolates recorded a diverse pattern of susceptibility/resistance to 23 antibiotics tested. Most of the bacterial isolates were susceptible to Ofloxacin, Ciprofloxacin, Ceftriaxone, Gentamicin, and Cefepime and resistant to Ceftazidime, Nitrofurantoin, Ampicillin, and Nalidixic acid. Isolate RB33-V recorded resistant against 11 antibiotics tested, and RB42-V was found susceptible to most of the antibiotics tested. Among the seven heavy metals tested, the highest of 39 bacteria showed resistance to zinc, and least of 9 bacteria recorded resistance against cadmium. Isolate RB20-III was susceptible to all heavy metals tested, and RB23-III was found resistance for six heavy metals tested. A higher correlation was observed with zinc and multiple antibiotic resistance, and Ceftazidime resistance was most frequently associated with all the heavy metals tested. These bacteria grow optimally under neutral-alkali conditions and susceptible to acidic conditions, and they can withstand a broad range of temperatures and salt concentrations. They are very poor in phosphate solubilization. Further, the bacteria recorded varied results for beneficial traits, hemolytic, and DNase activity. The results of bacterial characterization indicated that this bacterial community is of multi-origin in nature and are assisting the host-plant in withstanding the adverse and fluctuating conditions of the Yamuna river by reducing the toxic effect of heavy metals, antibiotics and other xenobiotics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.