Abstract

Bromine and iodine species are precursors for forming disinfection byproducts in finished drinking waters. Our study incorporates spatial and temporal data to quantify concentrations of inorganic (bromide (Br-), iodide (I-), and iodate (IO3-)), organic, and total bromine (BrT) and iodine (IT) species from 286 drinking water sources and 7 wastewater effluents across the United States. Br- ranged from <5-7800 μg/L (median of 62 μg/L in surface water (SW) and 95 μg/L in groundwater (GW)). I- was detected in 41% of SW (1-72 μg/L, median = <1 μg/L) and 62% of GW (<1-250 μg/L, median = 3 μg/L) samples. The median Br-/I- ratio in SW and GW was 22 μg/μg and 16 μg/μg, respectively, in paired samples with detect Br- and I-. BrT existed primarily as Br-, while IT was present as I-, IO3-, and/or total organic iodine (TOI). Inorganic iodine species (I- and IO3-) were predominant in GW samples, accounting for 60-100% of IT; however, they contributed to only 20-50% of IT in SW samples. The unknown fraction of IT was attributed to TOI. In lakes, seasonal cycling of I-species was observed and was presumably due to algal productivity. Finally, Spearman Rank Correlation tests revealed a strong correlation between Br- and IT in SW (RBr-,IT = 0.83) following the log10 (Br-, μg/L) = 0.65 × log10 (IT, μg/L) - 0.17 relationship. Br- and I- in treated wastewater effluents (median Br- = 234 μg/L, median I- = 5 μg/L) were higher than drinking water sources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.