Abstract
Ruthenium catalysts may allow for realization of renewable energy-based ammonia synthesis processes using mild reaction conditions (<400 °C, <10 MPa). However, ruthenium is relatively rare and therefore expensive. Here, we report a Co nanoparticle catalyst loaded on a basic Ba/La2O3 support and prereduced at 700 °C (Co/Ba/La2O3_700red) that showed higher ammonia synthesis activity at 350 °C and 1.0–3.0 MPa than two benchmark Ru catalysts, Cs+/Ru/MgO and Ru/CeO2. The synthesis rate of the catalyst at 350 °C and 1.0 MPa (19.3 mmol h–1 g–1) was 8.0 times that of Co/Ba/La2O3_500red and 6.9 times that of Co/La2O3_700red. The catalyst showed ammonia synthesis activity at temperatures down to 200 °C. Reduction at the high temperature induced the formation of BaO–La2O3 nanofractions around the Co nanoparticles by decomposition of BaCO3, which increased turnover frequency, inhibited the sintering of Co nanoparticles, and suppressed ammonia poisoning. These strategies may also be applicable to other non-noble metal catalysts, such as nickel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.