Abstract
CO monolayer oxidation on glassy carbon supported 1–2 nm Pt nanoparticles is studied using potential sweep and potential step methods. The CO stripping peak on the nanoparticles is significantly shifted to positive potentials vs. the corresponding feature at bulk polycrystalline Pt. Current transients at nanoparticulate electrodes are highly asymmetric with a steep rise, maximum at θCO≈0.8–0.9, and a slow decay following t−1/2. The experimental results are compared to the theoretical models of adsorbed CO oxidation described in the literature. A tentative model is suggested to account for the experimental observations, which comprises spatially confined formation of oxygen containing species at active sites, and slow diffusion of CO molecules to the active sites, where they are oxidized. The upper limit of the CO surface diffusion coefficient at Pt nanoparticles is estimated as approximately 4×10−15 cm2 s−1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.