Abstract

Fe3O4 nanoparticles are widely used in the diagnosis and treatment of diseases due to their superparamagnetism, but their toxicity in vivo, which can result in apoptosis or autophagy, cannot be ignored. It has been reported that polydopamine (PDA) modification can reduce the toxicity of Fe3O4 and increase its biocompatibility. However, more research is warranted to further improve the modification method. We therefore developed a new method to coat Fe3O4@PDA nanoparticles with the mesenchymal stem cell membrane (MSCM) and evaluated the toxicity of the modified particles in the lungs of mice.We found that the MSCM modification significantly reduced lung injury induced by Fe3O4 particles in mice. Compared with Fe3O4@PDA nanoparticles, co-modification with MSCM and PDA significantly reduced autophagy and apoptosis in mouse lung tissue, and reduced activation of autophagy mediated by the AMPK-ULK1 pathway axis. Thus, co-modification with MSCM and PDA prevents Fe3O4-induced pulmonary toxicity in mice by inhibiting autophagy, apoptosis, and oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.