Abstract

Among all kinds of cathodes for aqueous Zn-ion batteries, Mn-based hexacyanoferrates exhibit advantages of high-voltage and abundant resources. However, they suffer from inferior cycle-life and rate capability, which may be attributed to the structural instability and metal ion dissolution. In this work, a continuous element substitution (Mn replaced by Co) is employed to modify the electrochemical performance of Mn-based hexacyanoferrates. With the increasing ration of Co/Mn, the Mn, Co-based hexacyanoferrate (MnCoHCF) samples show unchanged crystalline phase with similar morphology and increasing Co dopant. Additionally, the initial specific capacity gradually decreases, but the electrochemical polarization is alleviated. Among the samples, MnCoHCF-4 (ratio of Co/Mn of 3:1) exhibits excellent cycling life (71.4% after 3000 cycles at 5 C) and rate performance (81.4 mA h g−1 at 10 C). In-situ techniques reveal the obvious metal ion dissolution with a low ratio of Co/Mn during the electrochemical process, resulting in poor structure stability and reaction kinetics of MnHCF electrode. However, When the ratio of Co/Mn is increased, the metal ion dissolution is effectively suppressed, and the MnCoHCF electrode shows improved structure stability and reaction kinetics. This work proposes an effective modification for hexacyanoferrates and other high-voltage Prussian blue analogues, which may promote the application of aqueous Zn-ion batteries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.