Abstract

Active and stable nonnoble electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) are required for water splitting by sustainable electricity. Here, Mn bonded with O and P is incorporated to modulate Co3S4 and Co2P respectively to enhance the catalytic activity and extend the catalyst lifetime. Mn3O4 adjusts the electronic structure of Co3S4 and Co atom fills the oxygen vacancy in Mn3O4. The interfacial interaction endows Co3S4/Mn3O4 to a lower reaction barrier due to ideal binding energies for OER intermediates. Structure stability of active sites and enhanced Co─S bonds by Operando Raman spectroscopy and theoretical calculations reduce the dissolution of Co3S4/Mn3O4, resulting in a lifetime of 500h at 50mAcm-2 for OER. The modulation of Co2P by MnP weakens the interaction between Co sites and adsorbed H*, achieving a high activity under a large current for HER. The assembled electrolyzer affords 50mAcm-2 at 1.58V and exhibits a lifetime of 350h at 50mAcm-2. The calculations disclose the electron interaction for the activity and stability, as well as the enhanced conductivity. The findings develop new avenues toward promoting catalytic activity and stability, making Co─Mn bimetallic nanowires efficient electrocatalysts for nonnoble water electrolyzers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call