Abstract

Electrocatalytic water splitting is a very promising and sustainable approach for generating hydrogen as a clean carbon-free fuel. To develop an efficient electrocatalyst for water splitting, the overpotential for this reaction must be minimized by using a capable electrocatalyst that can support the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we prepared a unique core–shell structure, Co-metal–organic framework (MOF) derived cobalt diselenide laminated with molybdenum diselenide (MOF-CoSe2@MoSe2) and assessed its performance as a bifunctional electrocatalyst for the HER and OER in alkaline media. The CC/MOF-CoSe2@MoSe2 core–shell structure fabricated directly on a flexible carbon cloth substrate demonstrated low overpotentials (η10) of 109.87 and 183.81 mV for the HER and OER, respectively, and a low voltage of 1.53 V for overall water splitting activity with an electrolyzer cell with symmetric CC/MOF-CoSe2@MoSe2 electrodes. The developed CC/MOF-CoSe2@MoSe2 catalyst had excellent stability over 24 h for OER, HER, and overall water splitting activity. These results suggest that lamination of MOF with a transition metal dichalcogenide is an effective route for developing the highly efficient and sustainable bifunctional electrocatalyst for overall water splitting activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.