Abstract
Co-metabolism is one of the effective approaches to increase the removal of refractory pollutants in microbial fuel cells (MFCs), but studies on the links between the co-substrates and biodegradation remain limited. In this study, four external carbon resources were used as co-substrates for phenol removal and power generation in MFC. The result demonstrated that acetate was the most efficient co-substrate with an initial phenol degradation of 78.8% and the voltage output of 389.0 mV. Polarization curves and cyclic voltammogram analysis indicated that acetate significantly increased the activity of extracellular electron transfer (EET) enzyme of the anodic microorganism, such as cytochrome c OmcA. GC-MS and LC-MS results suggested that phenol was biodegraded via catechol, 2-hydroxymuconic semialdehyde, and pyruvic acid, and these intermediates were reduced apparently in acetate feeding MFC. The microbial community analysis by high-throughput sequencing showed that Acidovorax, Geobacter, and Thauera were predominant species when using acetate as co-substrate. It can be concluded that the efficient removal of phenol was contributed to the positive interactions between electrochemically active bacteria and phenolic degradation bacteria. This study might provide new insight into the positive role of the co-substrate during the treatment of phenolic wastewater by MFC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.