Abstract

AbstractThe mesospheric inversion layer (MIL) phenomenon is a temperature enhancement (10–50 K) in a vertical layer (∼10 km) lasting several days and spanning thousands of kilometers within the mesosphere. As MILs govern the mesospheric variability, their study is crucial for a better understanding of the middle‐atmosphere global circulation. MIL phenomenon is also important for applications in aeronautics as perturbations in the mesosphere are significant issues for the safe reentry of rockets, space shuttles, or missiles. However, the description of this phenomenon remains incomplete, since no observations of MIL's effects on winds exist, hampering an understanding of the mechanisms responsible for their formation. This study investigates simultaneous wind‐temperature observations in the altitude range of 30–90 km during MIL events. Strong winds deceleration occurred in the same altitude range as the temperature inversion, confirming the role of gravity waves in MIL's formation mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call