Abstract
Due to regulations and technological advancements reducing tailpipe emissions, an increasing proportion of emissions arise from brake and tire wear particulate matter (PM). PM from these non-tailpipe sources contains heavy metals capable of generating oxidative stress in the lung. Although important, these particles remain understudied because the high cost of actively collecting filter samples. Improvements in electrical engineering, internet connectivity, and an increased public concern over air pollution have led to a proliferation of dense low-cost air sensor networks such as the PurpleAir monitors, which primarily measure unspeciated fine particulate matter (PM2.5). In this study, we model the concentrations of Ba, Zn, black carbon, reactive oxygen species concentration in the epithelial lining fluid, dithiothreitol (DTT) loss, and OH formation. We use a co-kriging approach, incorporating data from the PurpleAir network as a secondary predictor variable and a land-use regression (LUR) as an external drift. For most pollutant species, co-kriging models produced more accurate predictions than an LUR model, which did not incorporate data from the PurpleAir monitors. This finding suggests that low-cost sensors can enhance predictions of pollutants that are costly to measure extensively in the field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.