Abstract
Amid the current global challenge of antimicrobial resistance, RNA polymerase remains a paramount therapeutic target for tuberculosis. Dual binding of rifampin (RIF) and a novel compound, DAAP1, demonstrated the suppression of RIF resistance. However, a paucity of data elucidating the structural mechanism of action of this synergistic interaction prevails. Methodology & results: Molecular dynamic simulations unraveled the synergistic inhibitory characteristics of DAAP1and RIF. Co-binding induced a stable protein, increased the degree of compactness of binding site residues around RIF and subsequently an improved binding affinity toward RIF. Findings established the structural mechanism by which DAAP1stabilizes Mycobacterium tuberculosis RNA polymerase, thus possibly suppressing RIF resistance. This study will assist toward the design of novel inhibitors combating drug resistance in tuberculosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.