Abstract

A series of copper rich CuPd/Al2O3 catalysts were prepared and characterised by FTIR spectroscopy using CO as a probe molecule. After reduction, the surface composition was largely composed of Cu with evidence of a small concentration of isolated Pd atoms. It was found that CO induced surface segregation could be used to increase the surface Pd concentration and depending on the Cu:Pd ratio, the formation of Pd–Pd dimers was possible. Changes in surface composition were quantified and correlated with catalyst activity and selectivity for selective acetylene hydrogenation. For the catalyst with optimum Cu:Pd ratio (50:1), it was possible to use CO induced segregation to increase activity considerably (20K temperature reduction to achieve 100% conversion) whilst only marginally affecting ethylene selectivity (≈5% decrease in ethylene selectivity). An estimate of the detection limit by FTIR of the minimum surface coverage of isolated Pd and Pd–Pd dimers is given.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call