Abstract

LaNi4.7Al0.3 alloy was prepared by vacuum induction melting in high purity helium atmosphere, and the ingot was pulverized into 200–400 mesh powder after annealing. X-ray diffraction (XRD) and scanning electron microscopies (SEM) were utilized to study the alloy morphology and phase structure. X-ray photoelectron spectroscopy (XPS) was used for surface analysis. The poisoned alloy was tested at 30 °C in the mixture gas by thermogravimetric and differential thermal analyses (TG + DTA). The hydrogen storage properties were studied by the pressure-composition-temperature test. The activated sample was completely deactivated after only 3 hydriding/dehydriding cycles in hydrogen containing 300 ppm CO at 30 °C, but hydrogen storage capacity did not degrade when tested at 80 °C. Additionally, two different steps appeared in the absorption processes. Combined with XRD, XPS and TG + DTA results, an explanation for this phenomenon is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call