Abstract

DNA vaccination is a novel immunization strategy that has great potential for the development of vaccines and immune therapeutics. This strategy has been highly effective in mice, but is less immunogenic in non-human primates and in humans. Enhancing DNA vaccine potency remains a challenge. It is likely that antigen-presenting cells (APCs), and especially dendritic cells (DCs), play a significant role in the presentation of the vaccine antigen to the immune system. A new study reports the synergistic recruitment, expansion and activation of DCs in vivo by high-mobility group box 1 (HMGB1) protein. Such combinational strategies for delivering vaccine in a single, simple platform will hypothetically bolster the cellular immunity in vivo. Here, we combined plasmid encoding human immunodeficiency virus-1 (HIV-1) Gag and Env with an HMGB1 plasmid as a DNA adjuvant in BALB/c mice (by intramuscular immunization via electroporation), and humoral and cellular responses were measured. Co-administration of this potent immunostimulatory adjuvant strongly enhanced the cellular interferon-gamma (IFN-gamma) and humoral immune response compared with that obtained in mice immunized with vaccine only. Our results show that co-immunization with HMGB1 can have a strong adjuvant activity, driving strong cellular and humoral immunity that may be an effective immunological adjuvant in DNA vaccination against HIV-1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.