Abstract

Combinatorial application of different dye removal methods with specific features can lead to a novel and robust decolorizing system. In this study the bacterial spore laccase and TiO2 nanoparticles were co-entrapped to enhance dye degradation. The optimum entrapment conditions were achieved in the presence of alginate 2% (w/v) and Ca2+ (0.2M), Cu2+ (0.05M) and Zn2+ (0.25M) as matric polymer and counterions, respectively. Immobilized laccase showed a wide range of pH and temperature stability in comparison to the free spores. The entrapped degradation systems include single laccase, single TiO2, laccase + TiO2 (one-step remediation), TiO2/laccase (two-step remediation), and laccase/TiO2 (two-step remediation) that result to the 22%, 26% 45.6%, 47.6%, and 69.3% indigo carmine decolorization in 60 min. In the kinetic studies, the half-life of indigo carmine (25 mg/l) in the remediation processes containing laccase, TiO2, laccase + TiO2, TiO2/laccase, and laccase/TiO2 was calculated as 173, 138, 161, 115, and 57 min, respectively. The degradation products by co-entrapped system were not toxic against Sorghum vulgare. The results showed two-step decolorization by co-entrapped spore laccase and TiO2 nanoparticles, including the pretreatment of dye by laccase, and then, treatment by TiO2 has potential for degradation of indigo carmine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.