Abstract

The co-immobilization of glucose oxidase (GOD) and hexokinase/glucose-6-phosphate dehydrogenase (HEX) in the silica hybrid sol-gel film for development of amperometric biosensors was investigated. The silica hybrid film fabricated by hydrolysis of the mixture of tetraethyl orthosilicate and 3-(trimethoxysiyl)propyl methacrylate possessed a three-dimension vesicle structure and good uniformity and conformability, and was ready for enzyme immobilization. The electrochemical and spectroscopic measurements showed that the silica hybrid sol-gel provided excellent matrice for the enzyme immobilization and that the immobilized enzyme retained its bioactivity effectively. The immobilized GOD could catalyze the oxidation of glucose, which could be used to determine glucose at +1.0 V without help of any mediator. The competition between GOD and HEX for the substrate glucose involving ATP as a co-substrate led to a decrease of the glucose response, which allowed us to develop an ATP sensor with a good stability. The fabricated silica hybrid sol-gel matrice offered a stage for further study of immobilization and electrochemistry of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call