Abstract
The local electronic structure of the cobalt centre-ion of Co(III) protoporphyrin IX chloride dissolved in dimethyl sulfoxide (DMSO) liquid solution is studied by resonant inelastic X-ray scattering (RIXS) spectroscopy at the cobalt L-edge. The resulting cobalt 2p partial-fluorescence-yield (PFY) X-ray absorption (XA) spectrum, integrated from RIXS spectra, is simulated for various possible spin-states and coordination of the cobalt centre by using the newly developed density functional theory/restricted open shell single excitation configuration interaction (DFT/ROCIS) method. Comparison between experiment and calculation shows that the cobalt ion (3d(6) electronic configuration) adopts a low-spin state with all six 3d electrons paired, and the cobalt centre is either 5-coordinated by its natural ligands (one chloride ion and four nitrogen atoms), or 6-coordinated, when binding to an oxygen atom of a DMSO solvent molecule. Analysis of the measured RIXS spectra reveals weak 3d-3d electron correlation, and in addition a value of the local HOMO-LUMO gap at the Co sites is obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.