Abstract
The first Co(iii) complexes with (1,3-selenazol-2-yl)hydrazones as an unexplored class of ligands were prepared and characterized by NMR spectroscopy and X-ray diffraction analysis. The novel ligands act as NNN tridentate chelators forming octahedral Co(iii) complexes. The impact of structural changes on ligands' periphery as well as that of isosteric replacement of sulphur with selenium on the electrochemical and electronic absorption features of complexes are explored. To support the experimental data, density functional theory (DFT) calculations were also conducted. Theoretical NMR chemical shifts, the relative energies and natural bond orbital (NBO) analysis are calculated within the DFT approach, while the singlet excited state energies and HOMO-LUMO energy gap were calculated with time-dependent density functional theory (TD-DFT). The electrophilic f- and nucleophilic f+ Fukui functions are well adapted to find the electrophile and nucleophile centres in the molecules. Both (1,3-selenazol-2-yl)- and (1,3-thiazol-2-yl)hydrazone Co(iii) complexes showed potent antimicrobial and antioxidant activity. A significant difference among them was a smaller cytotoxicity of selenium compounds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.