Abstract

Co(II) substitution into the copper amine oxidases (CAOs) has been an effective tool for evaluating the mechanism of oxygen reduction in these enzymes. However, formation of hydrogen peroxide during turnover raises questions about the relevant oxidation state of the cobalt in these enzymes and, therefore, the interpretation of the activity of the metal-substituted enzyme with respect to its mechanism of action. In this study, Co(II) was incorporated into the CAO from Hansenula polymorpha (HPAO). The effect of hydrogen peroxide on the catalytic activity of cobalt-substituted HPAO was evaluated. Hydrogen peroxide, either generated during turnover or added exogenously, caused a decrease in the activity of the enzyme but did not oxidize Co(II) to Co(III). These results are in strong contrast with results from the CAO from Arthrobacter globiformis (AGAO), where hydrogen peroxide causes an increase in the activity of the enzyme as the Co(II) is oxidized to Co(III). The results of this study with HPAO support previous reports that have shown that this enzyme acts by transferring an electron directly from the reduced TPQ cofactor to dioxygen rather than passing the electron through the bound metal ion. Furthermore, these results provide additional evidence to support the idea that different CAOs use different mechanisms for catalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.