Abstract

A Cu-TiN composite powder was synthesized by ball milling a Ti2Cu alloy for 25 h in an N2 pressurized atmosphere for use in CuO-TiN and CuO-TiO2 p-type sensing materials. The sensing materials were prepared via a two-step oxidizing process following an investigation of their CO gas-sensing properties. The resistances of both sensing materials increased as CO was introduced, which is typical for a p-type semiconductor at temperature higher than 200 °C. It was found that the CuO-TiN powder shows a better response above 200 °C when compared to the CuO-TiO2 powder. The highest response shown by CuO-TiN was 3.18, while CuO-TiO2 shows a response of 2.20 for 1000 ppm of CO gas at 250 °C. It is believed that the lower responses of CuO-TiO2 at temperature higher than 200 °C was due to the falloff of p-type resistances by simultaneous operation of p- and n-type semiconductors in the presence of CO gas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call