Abstract

The application of conductive hydrogels in flexible electronics has attracted much interest in recent years due to their excellent mechanical properties and conductivity. However, the development of conductive hydrogels combining with superior self-adhesion, mechanical properties, antifreeze, and antibacterial activity is still a challenge. Herein, inspired by the structure of the ligament, a multifunctional conductive hydrogel is constructed to address the issue by introducing collagen into the polyacrylamide. The obtained conductive hydrogel exhibits outstanding conductivity (52.08 mS/cm), ultra-stretchability (>2000%), self-adhesion, and antibacterial properties. More significantly, the supercapacitor based on this hydrogel electrolyte achieves a desirable capacitance (514.7 mF·cm-2 at 0.25 mA·cm-2 current density). As a wearable strain sensor, the obtained hydrogel can rapidly detect different movements of the body such as finger, wrist, elbow, and knee joints. It is conceived that this study would provide a potential approach for the preparation of conductive hydrogels in the application of flexible electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.