Abstract

Co-combustion of eucalyptus bark (as shredded fuel) and rubberwood sawdust was conducted in a swirling fluidized-bed combustor using a 22-vane axial flow swirler. During the co-firing tests, the fuel blend feed rate was maintained at about 60kg/h, while the mass/energy fraction of the blended fuels was variable. Excess air supply ranged from 20% to 80% for each fuel option via variation of primary air, while secondary air was injected tangentially into the bed splash zone at a constant flowrate. For comparison, tests with pure rubberwood sawdust at similar operating conditions were performed as well. Temperature and concentrations of O2, CO and NO were measured along radial and axial directions in the combustor as well as at stack. For all fuel firing options, the radial and axial temperature profiles in the reactor were found to be weakly dependent on operating conditions. However, the gas concentration profiles exhibited apparent effects of fuel properties, excess air and secondary air injection, which resulted in variable emission characteristics of the combustor. For the sawdust energy fraction in the fuel blend of about 0.85, CO and NO emissions can be controlled at acceptable levels (both complying with the national emission limits) by maintaining excess air between 50% and 55%. Under such conditions, the co-combustion of high-moisture eucalyptus bark and rubberwood sawdust in the proposed combustor occurs in a stable regime with high, 99.6%, combustion efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.